viernes, 24 de abril de 2015

Línea de abonado digital asimétrica


Línea de suscriptor digital asimétrica,1 2 (ADSL, sigla del inglés Asymmetric Digital Subscriber Line), es un tipo de tecnología de línea de abonado digital (DSL) que consiste en la transmisión analógica de datos digitales apoyada en el cable de pares simétricos de cobre que lleva la línea telefónica convencional o línea de abonado (Red Telefónica Conmutada, PSTN),3 siempre y cuando la longitud de línea no supere los 5,5 km medidos desde la central telefónica, o no haya otros servicios por el mismo cable que puedan interferir.

Descripción[editar]

Frecuencias usadas en ADSL: el área roja es el área usada para la voz en la Red Telefónica Conmutada (PSTN), el verde es para subida de datos (upstream), y el azul es para descarga de datos (downstream).
ADSL es una tecnología de acceso a Internet de banda ancha, lo que implica una velocidad superior a una conexión por módem en la transferencia de datos, ya que el módem utiliza la banda de voz y por tanto impide el servicio de voz mientras se use y viceversa. Esto se consigue mediante una modulación de las señales de datos en una banda de frecuencias más alta que la utilizada en las conversaciones telefónicas convencionales (300 a 3400 Hz), función que realiza el enrutador ADSL. Para evitar distorsiones en las señales transmitidas, es necesaria la instalación de un filtro (discriminador, filtro DSL o splitter) que se encarga de separar la señal telefónica convencional de las señales moduladas de la conexión mediante ADSL.
Esta tecnología se denomina “seudo asimétrica” porque las capacidades: de descarga (desde la red hasta el usuario), y de subida de datos (en sentido inverso), no coinciden. La tecnología ADSL está diseñada para que la capacidad de bajada o descarga sea mayor que la de subida, lo que se corresponde con el uso de Internet por parte de la mayoría de usuarios finales, que reciben más información de la que envían (o descargan más de lo que suben).
En una línea ADSL se establecen tres canales de comunicación:
  1. canal de envío de datos,
  2. canal de recepción de datos, y,
  3. canal de servicio telefónico normal.
Las empresas de telefonía implantan versiones mejoradas de esta tecnología, como ADSL2 y ADSL2+, con capacidad de suministro de televisión y video de alta calidad por el par telefónico, lo cual supone una dura competencia entre las compañías telefónicas y los cableoperadores, y la aparición de ofertas integradas de vozdatos y televisión, a partir de una misma línea y dentro de una empresa o varias, que ofrezca estos tres servicios de comunicación por un mismo medio: Triple play. El uso de un mayor ancho de banda para estos servicios limita aún más la distancia a la que pueden funcionar, por el par de hilos.
ADSL2 y ADSL2+ incorporan mecanismos de modulación y gestión de los recursos físicos avanzados, de modo que no sólo aumentan la capacidad del ADSL convencional de 8 Mbit/s a, 12 y 24 Mbit/s, respectivamente, sino que introducen mejoras para evitar las interferencias o ruido, y disminuir los efectos de la atenuación, de ahí que se alcancen distancias de hasta 9 km.
El ADSL es una tecnología que utiliza el par de cobre y tiene menos ancho de banda que otras tecnologías como cablemódem o Metro Ethernet, cuyo cableado urbano está compuesto por hilos de fibra óptica en lugar del par de cobre implementado en su mayor parte en las décadas de 1950 y 1960.

Ventajas e inconvenientes[editar]

La tecnología ADSL presenta ventajas e inconvenientes respecto a la conexión telefónica a Internet por medio del módem.

Ventajas de ADSL[editar]

  • Ofrece la posibilidad de hablar por teléfono al mismo tiempo que se navega por Internet, porque voz y datos trabajan en bandas separadas por la propia tecnología ADSL y por filtros físicos (splitters y microfiltros).
  • Utiliza la infraestructura existente, de la red telefónica básica. Ventajoso, tanto para los operadores que no tienen que afrontar grandes gastos para la implantación de esta tecnología, como para los usuarios, ya que el costo y el tiempo que tardan en tener disponible el servicio es menor que si el operador tuviese que emprender obras para generar nueva infraestructura.
  • Ofrece velocidad de conexión mucho mayor que la obtenida mediante marcación telefónica a Internet; de hecho no se necesita el "marcado" tal como lo conocemos sino que se conecta independientemente de la conexión tradicional de voz. Este es el aspecto más interesante para los usuarios. En la gran mayoría de escenarios es la tecnología con mejor relación velocidad/precio.
  • Cada circuito entre abonado y central es único y exclusivo para ese usuario, es decir el cable de cobre que sale del domicilio del abonado llega a la central sin haber sido agregado, y por tanto evita cuellos de botella por canal compartido, lo cual sí ocurre en otras tecnologías, que utilizan un mismo cable para varios abonados (p.ej.: el cablemódem).

Inconvenientes de ADSL[editar]

  • No todas las líneas telefónicas pueden ofrecer este servicio, debido a que las exigencias de calidad del par, tanto de ruido como de atenuación, por distancia a la central, son más estrictas que para el servicio telefónico básico. De hecho, el límite teórico para un servicio aceptable equivale a 5,5 km de longitud de línea; el límite real suele ser del orden de los 3 km.
  • Debido a los requerimientos de calidad del par de cobre, el servicio no es económico en países con pocas o malas infraestructuras, sobre todo si lo comparamos con los precios en otros países con infraestructuras más avanzadas.
  • La calidad del servicio depende de factores externos, como interferencias en el cable o distancia a la central, al no existir repetidores de señal entre esta y el módem del usuario final. Esto hace que la calidad del servicio fluctúe, provocando en algunos casos cortes y/o disminución de caudal. Existen miles de fuentes de interferencias electromagnéticas, desde el agua hasta los motores eléctricos pasando por las instalaciones internas del cliente de los cables de corriente eléctrica o de hilo musical. Este problema no existe en la fibra óptica donde se transmite luz láser en un medio protegido por una cubierta opaca, ya que la luz es inmune a aquéllas interferencias.
  • Sus capacidades de transmisión son muy inferiores a otras tecnologías como Hybrid Fibre Coaxial (HFC), comúnmente denominado cable coaxial o fibra óptica.

Tabla comparativa de velocidades[editar]

NombreNombre comúnBajada máxima
(Mbit/s)
Subida máxima
(Mbit/s)
ANSI T1.413-1998 Issue 2ADSL81,0
ITU G.992.1ADSL (G.DMT)81,3
ITU G.992.1 Annex AADSL over POTS81,3
ITU G.992.1 Annex BADSL over ISDN81,8
ITU G.992.2ADSL Lite (G.Lite)1,50,5
ITU G.992.3ADSL2121,0
ITU G.992.3 Annex JADSL2133,15
ITU G.992.3 Annex LRE-ADSL250,8
ITU G.992.4splitterless ADSL21,50,5
ITU G.992.5ADSL2+241,0
ITU G.992.5 Annex MADSL2+M243,5

lunes, 23 de febrero de 2015

Rack


Wikimedia-servers-Sept04.jpg
Un rack es un soporte metálico destinado a alojar equipamiento electrónico, informático y de comunicaciones. Las medidas para la anchura están normalizadas para que sean compatibles con equipamiento de distintos fabricantes. También son llamados bastidores, cabinas, cabinetes o armarios.
Externamente, los racks para montaje de servidores tienen una anchura estándar de 600 milímetros (mm) y un fondo de 600, 800, 900, 1000 y ahora incluso 1200 mm. La anchura de 600 mm para racks de servidores coincide con el tamaño estándar de las losetas en los centros de datos. De esta manera es muy sencillo hacer distribuciones de espacios en centros de datos (CPD). Para el cableado de datos se utilizan también racks de 800 mm de ancho, cuando es necesario disponer de suficiente espacio lateral para el guiado de cables.

Usos[editar]

Conjunto de racks.
Los racks son útiles en un centro de proceso de datos, donde el espacio es escaso y se necesita alojar un gran número de dispositivos. Estos dispositivos suelen ser:
  • Servidores: cuya carcasa ha sido diseñada para adaptarse al bastidor. Existen servidores de 1, 2 y 4 unidades rack; y servidores blade que permiten compactar más compartiendo fuentes de alimentación y cableado.
  • Conmutadores y enrutadores de comunicaciones.
  • Paneles de parcheo, que centralizan todo el cableado de la planta.
  • Cortafuegos.
El equipamiento simplemente se desliza sobre un raíl horizontal y se fija con tornillos. También existen bandejas que permiten apoyar equipamiento no normalizado. Por ejemplo, un monitor o un teclado.

Estándar[editar]

Las especificaciones de un rack estándar se encuentran bajo las normas equivalentes DIN 41494 parte 1 y 7, UNE-20539 parte 1 y parte 2 e IEC 297 parte 1 y 2, EIA 310-D y tienen que cumplir la normativa medioambiental RoHS.
Los racks se dividen en regiones de 1¾ pulgadas de altura (44,45 milímetros). En cada región hay tres agujeros que siguen un orden simétrico. Esta región es la que se denomina altura o U. El espacio vertical mide 15,875 mm de altura cada una, para formar un total de 31,75 mm (1¼ pulgadas). Están separadas por 450,85 mm (17¾ pulgadas) y hacen un total de 482,6 mm (exactamente 19 pulgadas). Cada columna tiene agujeros a intervalos regulares llamados unidad rack (U) agrupados de tres en tres. Verticalmente, la altura de los racks está normalizada y sus dimensiones externas son de 200 mm en 200 mm. Lo normal es que existan desde 4 U de altura hasta 46/47 U de altura.
Es decir que, un rack de 41 U o 42 U, por ejemplo, nunca puede superar los 2000 mm de altura externa. Con esto se consigue que en una sala los racks tengan dimensiones prácticamente similares aun siendo de diferentes fabricantes.
Las alturas disponibles normalmente, según normativa, serían 800, 1000, 1200, 1400, 1600, 1800, 2000 y 2200 mm.
La profundidad del bastidor no está normalizada, ya que así se otorga cierta flexibilidad al equipamiento. No obstante, suele ser de 600, 800, 900, 1000 e incluso 1200 mm.
Existen también racks de pared que cumplen el formato 19 pulgadas y cuenta con fondos totales de 300, 400, 450, 500, 550 y 600 mm, siendo muy útiles para pequeñas instalaciones.

Racks[editar]

Soporte metálico para televisor.
Los racks son soportes metálicos para artículos de oficina y el hogar, como televisores, equipos de música, proyectores, cocinas, etcétera. Son productos que se adaptan a la comodidad del hogar, sin afectar a la estética del diseño de la sala de estudio, comedor, etcétera.

Usos[editar]

Los racks son útiles donde el espacio es el objetivo principal en la estética del lugar de la instalación.
Los televisores son los principales equipos para la utilización de este soporte metálico, y las medidas son variadas, de acuerdo del fabricante del televisor. En la parte posterior, los fabricantes implementaron refuerzos internos para que puedan ser sujetados por soportes externos. Existen medidas de 20 x 20 centímetros (cm), 40 x 40 cm, 20 x 40 cm, etcétera, según el tamaño y pulgada de la pantalla.
Existen racks fijos, movibles con un brazo y doble brazo, para pared y techo.
Para preservar el buen estado del televisor, es necesario que el rack sea fuerte y que sea correcta la instalación.

Servidor


Un servidor es una aplicación en ejecución (software) capaz de atender las peticiones de un cliente y devolverle una respuesta en concordancia. Los servidores se pueden ejecutar en cualquier tipo de computadora, incluso en computadoras dedicadas a las cuales se les conoce individualmente como "el servidor". En la mayoría de los casos una misma computadora puede proveer múltiples servicios y tener varios servidores en funcionamiento. La ventaja de montar un servidor en computadoras dedicadas es la seguridad. Por esta razón la mayoría de los servidores son procesos daemon diseñados de forma que puedan funcionar en computadoras de propósito específico.
Los servidores operan a través de una arquitectura cliente-servidor. Los servidores son programas de computadora en ejecución que atienden las peticiones de otros programas, los clientes. Por tanto, el servidor realiza otras tareas para beneficio de los clientes. Ofrece a los clientes la posibilidad de compartir datos, información y recursos de hardware y software. Los clientes usualmente se conectan al servidor a través de la red pero también pueden acceder a él a través de la computadora donde está funcionando. En el contexto de redes Internet Protocol (IP), un servidor es un programa que opera como oyente de un socket.
Comúnmente los servidores proveen servicios esenciales dentro de una red, ya sea para usuarios privados dentro de una organización o compañía, o para usuarios públicos a través de Internet. Los tipos de servidores más comunes son servidor de base de datos, servidor de archivos, servidor de correo, servidor de impresion, servidor web, servidor de juego, y servidor de aplicaciones.
Un gran número de sistemas usa el modelo de red cliente-servidor, entre ellos los sitios web y los servicios de correo. Un modelo alternativo, el modelo red peer-to-peer permite a todas las computadoras conectadas actuar como clientes o servidores acorde a las necesidades.

Uso[editar]

El termino servidor es ampliamente utilizado en el campo de las tecnologías de la información. A pesar de la amplia disponibilidad de productos etiquetados como productos de servidores (tales como versiones de hardware, software y OS diseñadas para servidores), en teoría, cualquier proceso computacional que comparta un recurso con uno o más procesos clientes es un servidor. Tomemos como ejemplo la acción de compartir ficheros. Mientras la existencia de ficheros dentro de una computadora no la clasifica como un servidor, el mecanismo del sistema operativo que comparte estos ficheros a los clientes si es un servidor.
De manera similar consideremos una aplicación web servidor (como por ejemplo el servidor multiplataforma "Apache"). Este servidor web puede en cualquier tipo de computadora ejecutarse en cualquier tipo de computadora que cumpla con los requerimientos mínimos. Por ejemplo, mientras una laptop o computadora personal usualmente no son consideradas como servidores, en ciertos casos (como el anterior) pueden cumplir el rol de uno y por lo tanto ser denominadas servidores. En este caso es el rol de la computadora el que la coloca en la categoría de servidor.
En el sentido del hardware, la palabra servidor normalmente etiqueta modelos de computadora diseñados para hospedar un conjunto de aplicaciones que tiene gran demanda dentro de una red. En esta configuración cliente-servidor, uno o más equipos, lo mismo una computadora que una aplicación informática, comparten información entre ellos de forma que uno actúa como host de los otros.
Casi todas las computadora personal pueden actuar como un servidor, pero un servidor dedicado tendrá cualidades más adecuadas para un ambiente de producción. Entre estas cualidades se pueden mencionar más rápidos CPUmás rápidas, RAM mejoradas para alto desempeño, y mayores capacidades de almacenamiento en forma de múltiples discos duros. Los servidores también cuentan con otras cualidades como confiabilidad, disponibilidad y utilidad (RAS) y tolerancia a fallos, esta última en forma de redundancia en el número de fuentes, almacenamiento (RAID), y conexiones de red.
Los servidores se volvieron comunes a principios de 1990 en la medida en que los negocios comenzaron a utilizar computadoras personales para brindar servicios que anteriormente se alojaban en mainframes o en microcomputadoras. Los primero servidores de archivos contaban con múltiples torres de CD, utilizados para alojar grandes aplicaciones de bases de datos.
Entre 1990 y el 2000 el aumento en el uso de hardware específico marco el advenimiento aplicaciones de servidor autosuficientes. Uno de estas aplicaciones bien conocidas es el Google Search Appliance, que combina hardware y software en un paquete out-of-the-box packaging. Productos similares fueron el Cobalt Qube y el RaQ. Ejemplos más sencillos de dichos equipos incluyen switches, routers, gateways, y servidores de impresión, los cuales son facilmente utilizables a través de una configuración plug-and-play.
Los sistemas operativos modernos como Microsoft Windows o las distribuciones de Linux parecen haber sido diseñados siguiendo una arquitectura cliente-servidor. Estos sistemas operativos se abstraen del hardware, permitiendo a una gran variedad de software trabajar con componentes de la computadora. De alguna forma, el sistema operativo puede ser visto como un servidor de hardware al software, pues excepto en los lenguajes de programación de bajo nivel el software debe interactuar con el hardware a través de un API.
Estos sistemas operativos son capaces de ejecutar programas en un segundo plano los cuales son llamados servicios o daemons. Estos programas, entre los que se encuentra el Servidor HTTP Apache previamente mencionado, pueden permanecer en un estado dormido hasta que sea necesario su uso. Como cualquier software que brinde servicios puede ser llamado servidor, las computadoras personales modernas se pueden ver como bosques de aplicaciones clientes y servidores operando en paralelo.
El propio Internet es un bosque de servidores y clientes. Solo el hecho de solicitar una página web de un servidor a pocos kilómetros de distancia conlleva a satisfacer una pila de protocolos de red que incluyen varios ejemplos del uso de hardware y software para servidores. Los más sencillos de estos son los routers, modems, servidores DNS, además de otros sin cuya interacción no podríamos acceder a la web.
La aparición de la computación en la nube permite servidores de almacenamiento, así como compartir recursos con un fondo común; igualmente permite a los servidores mantener un mayor grado de tolerancia a las fallas.

Requerimientos de Hardware[editar]

Un servidor rack con la cubierta retirada.
Los requerimientos de hardware para los servidores varían en dependencia del tipo de aplicación del servidor. La velocidad de la CPU no es tan crítica para un servidor como lo sería para una máquina de escritorio. El deber de los servidores de proveer servicios dentro de una red a un gran número de usuarios impone diferentes requerimientos, tales como conexiones de alta velocidad y altas prestaciones para todos los dispositivos de I/O. Como generalmente se accede a los servidores a través de la red, estos pueden funcionar sin necesidad de un monitor u otros dispositivos de entrada. Aquellos procesos que no son necesarios para las funciones del servidor no se utilizan. Muchos servidores no cuentan con una interfaz gráfica de usuario (GUI) ya que esta funcionalidad consume recursos que pueden ser utilizados por otros procesos. Igualmente las interfaces de audio y USB también pueden ser omitidas.
Los servidores funcionan por largos períodos de tiempo sin interrupción y su disponibilidad debe ser alta la mayor parte del tiempo, haciendo que la confiabilidad y durabilidad del hardware sean extremadamente importantes. Aunque los servidores pueden ser ensamblados a partir de piezas para computadoras comunes, aquellos servidores que realizan tareas críticas dentro de la infraestructura de un empresa son idealmente muy tolerantes a fallas y utilizan hardware especializado con tasa de fallo para maximizar su tiempo de funcionamiento, pues una simple falla de poco tiempo de duración puede representar costos mayores a los de comprar las piezas e instalar todo el sistema. Por ejemplo, una falla de pocos minutos en una bolsa de acciones basta para justificar los gastos de sustitución de todo el sistema por otro más confiable. Los servidores pueden incluir discos de mayor capacidad y velocidad, sistemas de enfriamiento por agua, mayores disipadores para reducir el calor, abastecimientos de energía ininterrumpido que garantice el funcionamiento del servidor ante una falla del fluido eléctrico. Estos componentes ofrecen un mayor desempeño y confiabilidad en correspondencia a un mayor precio. La redundancia de hardware —instalar más de una instancia de un módulo como la fuente o el disco duro dispuestos de forma tal que si uno falla el otro se encuentre automáticamente disponible— es ampliamente utilizada. Se utilizan dispositivos de memoria ECC que detectan y corrigen errores; otros tipos de memoria que no son ECC pueden conllevar a una corrupción de los datos.3
Para aumentar la confiabilidad la mayoría de los servidores utilizan memoria para detección y corrección de errores, discos redundantes, fuentes redundantes y más. Es común que estos componentes pueden ser sustituidos en caliente, permitiendo que los técnicos puedan cambiar piezas defectuosas en un servidor sin la necesidad de tener que apagarlo. Los servidores cuentan usualmente con mejores disipadores para prevenir un sobrecalentamiento. Como en la mayoría de los casos los servidores son administrados por administradores de sistema calificados, el sistema operativo con que cuentan está más enfocado en la estabilidad y el desempeño que en parecer acogedor y fácil de usar, siendo Linux el que mayor por ciento de uso toma.
Como la mayoría de los servidores son ruidosos y necesitan de estabilidad en el fluido eléctrico, buen acceso a Internet, y mayor seguridad, es común almacenarlos en centros de servidores. . Como los servidores se agrupan siempre se busca reducir el consumo energético, pues la energía extra utilizada produce un aumento de la temperatura en la habitación lo que provocando que se excedan los límites de temperatura aceptables; por ello la mayoría de las habitaciones para servidores cuentan con equipos de aire acondicionado. La cubierta de la mayoría de los servidores tiende a ser plana y ancha (usualmente medida en "unidades rack"), adaptada para almacenar varios dispositivos juntos en un soporte para servidores. A diferencia de las computadoras ordinarias los servidores pueden ser configurados, encendidos, apagados o reiniciados remotamente usando administración remota, usualmente basada en IPMI.
Muchos servidores se demoran en arrancar el hardware e inicializar el sistema operativo. Es frecuente que los servidores realicen extensas pruebas de memoria antes de inicializar además la inicialización y verificación de servicios de administración remotos. Los controladores de discos duros inician los dispositivos secuencialmente, en vez de todos a la vez, para no sobrecargar la fuente de alimentación con la carga de arranque, y luego inician el chequeo del sistema RAID para probar que las operaciones redundantes funcionen de forma correcta. Es común que un servidor tome varios minutos para inicializarse pero puede que no sea necesario reiniciarlo en meses o años.

Vista trasera de un servidor rack 
Wikimedia Foundation vista frontal de un servidor  
Wikimedia Foundation vista frontal de un servidor  
Wikimedia Foundation vista frontal de un servidor  

Sistemas Operativos[editar]

Los sistemas operativos orientados a servidores cuentan con ciertas cualidades que los hacen más adecuados para el entorno de un servidor, como
  • GUI opcional o no disponible
  • La habilidad de reconfigurar y actualizar el hardware y el software sin la necesidad de reiniciar
  • Facildades avanzadas de copia para permitir copias regulares online de datos críticos
  • Transferencia transparente de datos entre diferentes volumenes or dispositivos,
  • Cualidades avanzadas y flexible para el trabajo con la red
  • Cualidades para la automatización como los daemons en UNIX y los servicios en Windows
  • Fuerte seguridad en el sistema con protección avanzada a usuarios, datos, recursos y memoria
En muchos casos, los sistemas operativos orientados a servidores pueden interactuar con sensores de hardware para detectar estados como sobrecalentamiento, fallas de discos o del procesador, y en consecuencia alertar a su operador o tomar medidas de rectificación por sí mismo.
Como los servidores deben proveer un conjunto limitado de servicios a múltiples usuarios mientras que una computadora personal debe soportar una amplia variedad de funcionalidades requeridas por su usuario, los requerimientos de un sistema operativo para un servidor son diferentes de aquellos en una computadora de escritorio. Aunque es posible que un sistema operativo hacer que una computadora provea servicios y responda rápidamente a los requerimientos de un usuario, es común el uso de diferentes sistemas operativos en servidores y computadoras de personal. Algunos sistemas operativos vienen en sus versiones personales (desktop) y servidor (server) con interfaces de usuario similares.6
Los sistemas operativos para servidores de Windows y Mac OS X son usados en una minoría de los servidores, ya que también existen otros sistemas operativos pagos para mainframes como z/OS. Los sistemas operativos predominantes en servidores son aquellos que siguen distribuciones de software open source de UNIX , como los basados en Linux y FreeBSD. El ascenso de los servidores basados en microprocesadores se facilitó a partir del desarrollo de UNIX para ejecutarse sobre la arquitectura de microprocesador x86. La familia de sistemas operativos de Microsoft Windows también puede ejecutarse sobre el hardware x86 y desde Windows NT, está disponible para versiones adecuadas para uso en servidores.
Mientras que el rol de los sistemas operativos para servidores y para computadoras personales permanece diferente, las mejoras en la confiabilidad tanto del hardware como del sistema operativo han hecho borrosa la distinción entre estas dos clases. . Hoy en día muchos sistemas operativos para computadoras personales y para servidores comparten las mismas bases en su código, difiriendo mayormente en su configuración. El cambio hacia las aplicaciones web y las plataformas middleware también ha enseñado la demanda de servidores especializados para aplicaciones.

Tipos de servidor[editar]

En la siguiente lista hay algunos tipos comunes de servidores:
  • Servidor de archivos: es el que almacena varios tipos de archivos y los distribuye a otros clientes en la red.
  • Servidor de impresiones: controla una o más impresoras y acepta trabajos de impresión de otros clientes de la red, poniendo en cola los trabajos de impresión (aunque también puede cambiar la prioridad de las diferentes impresiones), y realizando la mayoría o todas las otras funciones que en un sitio de trabajo se realizaría para lograr una tarea de impresión si la impresora fuera conectada directamente con el puerto de impresora del sitio de trabajo.
  • Servidor de correo: almacena, envía, recibe, enruta y realiza otras operaciones relacionadas con el correo electrónico para los clientes de la red.
  • Servidor de fax: almacena, envía, recibe, enruta y realiza otras funciones necesarias para la transmisión, la recepción y la distribución apropiadas de los fax.
  • Servidor de la telefonía: realiza funciones relacionadas con la telefonía, como es la de contestador automático, realizando las funciones de un sistema interactivo para la respuesta de la voz, almacenando los mensajes de voz, encaminando las llamadas y controlando también la red o el Internet, p. ej., la entrada excesiva de la voz sobre IP (VoIP), etc.
  • Servidor proxy: realiza un cierto tipo de funciones a nombre de otros clientes en la red para aumentar el funcionamiento de ciertas operaciones (p. ej., prefetching y depositar documentos u otros datos que se soliciten muy frecuentemente), también proporciona servicios de seguridad, o sea, incluye un cortafuegos. Permite administrar el acceso a internet en una red de computadoras permitiendo o negando el acceso a diferentes sitios Web.
  • Servidor del acceso remoto (RAS): controla las líneas de módem de los monitores u otros canales de comunicación de la red para que las peticiones conecten con la red de una posición remota, responde llamadas telefónicas entrantes o reconoce la petición de la red y realiza la autenticación necesaria y otros procedimientos necesarios para registrar a un usuario en la red.
  • Servidor de uso: realiza la parte lógica de la informática o del negocio de un uso del cliente, aceptando las instrucciones para que se realicen las operaciones de un sitio de trabajo y sirviendo los resultados a su vez al sitio de trabajo, mientras que el sitio de trabajo realiza la interfaz operadora o la porción del GUI del proceso (es decir, la lógica de la presentación) que se requiere para trabajar correctamente.
  • Servidor web: Almacena documentos HTML, imágenes, archivos de texto, escrituras, y demás material Web compuesto por datos (conocidos colectivamente como contenido), y distribuye este contenido a clientes que la piden en la red.
  • Servidor de base de datos: provee servicios de base de datos a otros programas u otras computadoras, como es definido por el modelo cliente-servidor. También puede hacer referencia a aquellas computadoras (servidores) dedicadas a ejecutar esos programas, prestando el servicio.
  • Servidor de reserva: tiene el software de reserva de la red instalado y tiene cantidades grandes de almacenamiento de la red en discos duros u otras formas del almacenamiento (cinta, etc.) disponibles para que se utilice con el fin de asegurarse de que la pérdida de un servidor principal no afecte a la red. Esta técnica también es denominada clustering.
  • Servidor de Seguridad: Tiene software especializado para detener intrusiones maliciosas, normalmente tienen antivirus, antispyware, antimalware, además de contar con cortafuegos redundantes de diversos niveles y/o capas para evitar ataques, los servidores de seguridad varían dependiendo de su utilización e importancia.
Sin embargo, de acuerdo al rol que asumen dentro de una red se dividen en:
  • Servidor dedicado: son aquellos que le dedican toda su potencia a administrar los recursos de la red, es decir, a atender las solicitudes de procesamiento de los clientes.
  • Servidor no dedicado: son aquellos que no dedican toda su potencia a los clientes, sino también pueden jugar el rol de estaciones de trabajo al procesar solicitudes de un usuario local.

Consumo de energía[editar]

En 2010, los data centers (servidores, enfriamiento, y resto de infraestructura eléctrica), consumieron del 1.1 al 1.5% de la energía eléctrica en el mundo y del 1.7 al 2.2% en los Estados Unidos.
Concretamente, este consumo es menor que el de 6 billones de teléfonos móviles que hay en el mundo cuando van a recargar sus baterías. Incluso este consumo puede parecer despreciable, en base a las tasas de consumo de la calefaccion, el enfriamiento y el calentamiento de agua domésticos, que asciende a los dos dígitos. Finalmente, el reporte Smart2020, estima que ICT (Information and Communications Technology) ahorra más de 5 veces su huella de carbono.t10 que el resto de la economía por aumento de la eficiencia.

Clases de tamaño[editar]

Las clases de tamaño incluyen:
  • servidores rack
  • servidor de torre
  • servidores de miniatura (para casa0)
  • mini servidores rack
  • servidor blade
  • servidores móviles
  • servidores ultra-densos
  • super servidores

sábado, 1 de noviembre de 2014

Diferencias entre discos duros SATA, SAS y SSD


Guillermo Lsi


cabecera-discos-duros



Principalmente podemos diferenciar tres tipos de disco duros: SATA, SAS y SSD.

Discos duros SATA


discos duros sata


Son los discos utilizados en la actualidad. Estos discos no van conectados a zócalos IDE, por lo que no tienen las limitaciones inherentes a dicho sistema (es decir, dos dispositivos por conector, configurados como Master y Slave o como Cable Select), sino que van conectados directamente a un puerto SATA (Serial ATA), cada disco de forma independiente, determinándose el disco de inicio del sistema en la propia BIOS. El número de conectores SATA en una placa base depende tan solo de la capacidad del chipset que se monte, siendo lo más habitual que cuenten con 4 o 6 puertos SATA, aunque existen placas con un número mayor.


SATA no utiliza las fajas de 80 hilos, sino cables planos de 7 hilos, mucho más estrechos, que permiten entre otras cosas una mejor refrigeración del sistema y una mayor longitud en los cables. En cuanto a las tomas de alimentación también son diferentes, aunque con los mismos voltajes que los empleados en los discos IDE, si bien están en un orden diferente. Hay algunos discos SATA que llevan ambos tipos de tomas de alimentación como por ejemplo algunos modelos de Western Digital o de Samsung, aunque no es lo más habitual.

En cuanto a los tipos de SATA existentes, son los siguientes:

  • SATA o SATA 1, con una velocidad de transmisiónde 150MB/s, llamado también SATA 1.5Gb. Este tipo ya prácticamente no se utiliza, a pesar de su reciente aparición.
  • SATA 2, con una velocidad de transmisiónde 300MB/s, conocido también como SATA 3Gb. Es el tipo más utilizado, y suelen tener un jumper para poder utilizarlos como SATA 1.
  • El tipo SATA 6Gb, con una velocidad de transmisión de 600MBs .

Discos Duros SAS

discos-duros-sas


El disco duro SAS es un dispositivo electromecánico que se encarga de almacenar y leer grandes volúmenes de información a altas velocidades por medio de pequeños electroimanes  (también llamadas cabezas de lectura y escritura), sobre un disco recubierto de limadura magnética. Los discos vienen montados sobre un eje que gira a altas velocidades. El interior del dispositivo está totalmente libre de aire y  de polvo, para evitar choques entre partículas y por ende, pérdida de datos, el disco permanece girando todo el tiempo que se encuentra encendido. Será el sucesor del estándar de discos duros con interfaz paralela SCSI.

RPM SAS: Significa “Revolutions per Minute” ó vueltas por minuto. Este valor determina la velocidad a la que los discos internos giran cada minuto. Su unidad de medida es: revoluciones por minuto (RPM). Este dato puede ser 7,200 RPM, 10,000 RPM hasta 15,000 RPM.

Capacidades de almacenamiento SAS: Es el total de Bytes ó símbolos que es capaz de almacenar un disco duro. Su unidad de medida es el Byte, pero actualmente se utilizan medidas como el GigaByte (GB) y el TeraByte (TB). Para discos duros SAS este dato puede estar entre 72 GigaBytes (GB) hasta 2 TeraBytes (TB).

Velocidad de transferencia: Indica la velocidad de transferencia de datos máxima, expresada en Gb/s (Gigabits/segundo).Un disco duro SAS tiene dentro de sus características lo siguiente: Marca HP®, 600 GB, SFF 2.5 Inch,  Hot Plug*, 6G*, SAS, 10K RPM.     * Este dato indica la velocidad de transferencia de datos, en este caso 6 Gigabits/segundo.

Beneficios de usar  discos duros SAS


Al fusionar el rendimiento y la fiabilidad de la interfaz serie con los entornos SCSI existentes, SAS aporta mayor libertad a las soluciones de almacenamiento sin perder la base tradicional sobre la que se construyó el almacenamiento para empresas, otorgando las siguientes características:

  • Acelera el rendimiento del almacenamiento en comparación con la tecnología SCSI paralela
  • Garantiza la integridad de los datos
  • Protege las inversiones en TI
  • Habilita la flexibilidad en el diseño de sistemas con unidades de disco SATA en un compartimento sencillo

Discos duros SSD

disco-duro-ssd



Los tiempos de acceso a los Discos Duro SSD son hasta diez veces más rápidos que los discos duros convencionales, tienen menos desgaste debido a que los discos SSD no tienen partes mecánicas, son sólidos. Los discos duros SSD también desprenden menos calor al alcanzar menos temperatura y no hacen absolutamente ningún ruido.

Cuando un servidor lleva discos SSD tiene un acceso mucho más rápido a los datos, por lo que si el servidor es web, los tiempos de respuesta mejoraran considerablemente en las consultas a la base de datos que no estén cargadas en la memoria RAM.

El siguiente video expresa de manera gráfica la comparación entre estos dos dispositivos de almacenamiento, en este caso, comparan las memorias SSD de Samsung.






imagen-hdd-vs-ssd

Comparativa Disco Duro HHD y Unidad SSD

Hay ciertas características técnicas que me gustaría destacar y diferenciar de manera general entre estos dos dispositivos.





Disco Duro Unidad SSD


Desempeño

Esta unidad ha logrado alcanzar velocidades de transmisión muy importantes

Sin embargo, los SSD cuentan con un desempeño 48% superior a la de un Disco Duro tradicional



Fallas

MTBF es la medida aritmética que sirve para expresar la probabilidad de fallo de un dispositivo según las horas de empleo. Él MTBF de un HDD es de 300,000

Un SSD es más eficiente hasta un 300% contra un HDD, teniendo un MTBF de 1,000,000



Resistencia

Las pruebas de resistencia se miden en una unidad denominada “G”. Un disco duro tiene una resistencia promedio de 300G, lo que hace de este, un elemento muy sensible ante impactos

La resistencia de un SSD es 5 veces mayor, obteniendo un promedio de 1,500G



Energía

Debido a los mecanismos en movimiento con él que trabaja, su consumo de energía suele ser alto, siendo uno de los dispositivos que mas consumo requiere para funcionar

Algo que destaca en este tipo de memoria es su bajo consumo de energía, lo que permite trabajar a las ultrabooks 5 veces más tiempo



Lectura y Escritura

La tecnología de este dispositivo alcanza velocidades de lectura de 80Mb/s y de hasta 60Mb/s de escritura. Aunque es eficiente, podría terminar siendo lenta para las necesidades y estándares actuales

La transmisión de datos en una unidad SSD es cinco veces mayor, obteniendo velocidades de 250Mb/s para lectura y 230Mb/s para escritura



Multitareas

Si bien, los HDD ofrecen una operación confiable, nunca deja de suceder que se “congele” un programa mientras se abre otro o un alentamiento paulatino mientras se llena la memoria

La tecnología SSD es capaz de abrir hasta 2.5 veces más rápido una aplicación en comparación con los HDD. Esto facilita la ejecución de aplicaciones de manera simultánea



Temperatura

Volviendo al punto de las partes móviles de un HDD, estas consumen grandes cantidades de energía lo que se traduce en calor mientras está en funcionamiento

Como mencionamos con anterioridad, este dispositivo no cuenta con partes móviles, por lo que su poco consumo de energía produce poco calor



Peso

El peso promedio de un HDD es de 500gr

El peso promedio de un SSD es de 80gr






Una vez descrito las principales diferencias la pregunta del millón es:

HDD vs SSD ¿Cuál es mejor?

Una de las principales características que diferencian los discos duros SSD a los discos duros móviles es La temperatura que alcanzan estos últimos discos duros. Con lo que se requiere de un sistema de refrigeración adecuados para estos. En cambio los discos duros SSD apenas se calientan.

Otra de las principales diferencias notables es la sensibilidad a los golpes y movimientos lo que se traduce en menos riesgos de causar daños y menos riesgo de pérdida de información por pequeños accidentes.

En muchos casos una pérdida de información irreparable.

Discos SSD contra discos duros

Autor: Sacha Fuentes

Los discos SSD parecen estar de moda en los últimos tiempos. Muchos fabricantes de portátiles los están adoptando, especialmente en la gama de ultraportátiles y en portátiles de gama alta. Pero, ¿vale la pena optar por un disco SSD en lugar de un disco duro convencional?

Sin querer entrar en datos específicos, para los que es necesario hacer unas buenas pruebas de rendimiento comparando ambos tipos de discos, es necesario ver tanto las ventajas como los inconvenientes de ambos tipos de dispositivos de almacenamiento.

Desde LaptopMag han hecho unas pruebas informales, sustituyendo el disco duro de un MSI Wind por un disco SSD, y afirman que la diferencia de rendimiento era inapreciable, tanto en el tiempo de arranque como en el uso habitual. Algo similar ocurría con la duración de la batería.

Claro que estas fueron apreciaciones subjetivas, en las cuales, además, habría que ver tanto la velocidad del disco duro original como la del disco SSD, puesto que no es lo mismo comparar un disco duro de 5400 rpm con uno de 7200 rpm, igual que no lo es comparar un disco SSD de buena calidad con uno de los más baratos.

Entre las ventajas de los discos SSD encontramos un menor tiempo de acceso a los datos (además de ser este constante), algo en lo que los disco duros han mejorado bastante, un menor consumo de batería, algo discutible y que habría que comprobar con datos, y, teóricamente, una mayor fiabilidad, ya que no dependen de elementos mecánicos, por lo que pueden resistir sin problemas golpes y caídas.
En este último apartado, los fabricantes de discos duros han estado trabajando para evitar ese problema, incorporando acelerómetros que detectan caídas y aparcan automáticamente los cabezales del disco, evitando daños en la superficie de este.

En contra de los discos SSD encontramos que el número de ciclos de escritura es más bajo que el de los discos duros, lo cual no debería ser un problema demasiado grande pero si algo a tener en cuenta, además de un coste por MB bastante más elevado. En un futuro su precio se reducirá, pero de momento la diferencia es bastante alta.
A favor de los discos duros tenemos que están disponibles con grandes capacidades de almacenamiento, con tamaños cada día más reducidos y con unos precios bastante razonables. En una época en que la cantidad de datos que almacenamos en nuestros ordenadores es tan alta es algo a tener en cuenta.

Además de eso, aunque en general el tiempo de acceso a los datos es menor en disco SSD, la tasa de transferencia suele ser más alta, por lo que copiar ficheros de gran tamaño es mucho más rápido. En contra de los disco duros tenemos diversos factores. EL primero es la generación de calor, que se ve acrecentada con la reducción de tamaño de estos y, al ser usados en portátiles, por afectar directamente al resto del equipo.

Otro factor que puede resultar importante para algunos usuarios es el ruido generado. Mientras que los discos SSD son totalmente silenciosos los discos duros siguen generando una cantidad de ruido importante, tal vez inapreciable en un uso general pero que se nota en un ambiente silencioso.
Vemos, por tanto, que los factores a considerar a la hora de decidirse entre uno u otro formato son múltiples y variados. Será necesario valorar cada uno de ellos a la hora de adquirir un nuevo ordenador, aunque de momento queda claro que los discos SSD de mayor capacidad (sobre los 64 GB hoy en día) tienen un precio realmente elevado y que no compensa para la mayoría de usuarios, por lo que si queremos mucho espacio de almacenamiento un disco duro es imprescindible.

En cambio, en ultraportátiles que se usarán prácticamente solo para conectarse a la red un disco SSD tiene mucha más lógica y permite reducir el peso del equipo, un factor muy importante. ¿Nos compensa entonces? Pues, como siempre, todo depende del uso que le vayamos a dar al ordenador.